Can-Stack Actuators

The Haydon™ brand of can-stack stepper motor linear actuators provides both a broader range and, for a given size, significantly higher thrust than previously available from mini-steppers. Haydon Kerk Motion Solutions patented design accepts a larger rotor than conventional units, improving efficiency and eliminating the need for massive heat sinks. Unique features impart ruggedness and reliability that assure long life and consistent performance. Rare earth magnets are available for even higher thrust. All units are built with dual ball bearings for greater motion control, precise step accuracy and long life.

G4 19000 Series

Ø 20 mm (.79-in) Can-Stack
 Stepper Motor Linear Actuators

Utilizing high energy rare earth (neodymium) magnets,the G4 Series linear actuators consistently deliver exceptional performance. All units are built with dual ball bearings.
The highest force of any similar size linear actuator stepper motor

Multiple versions available

- Captive
- Non-Captive
- External Linear

Specifications

Linear Travel / Step 15° Step Angle			Order Code I.D.
step	inches	mm	
7.5°	0.0005	0.013	3
	0.001	0.0254	1
	0.002	0.051	2
15°	0.001	0.0254	1
	0.002	0.051	2
	0.004	0.102	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.

Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

Non-Captive Lead Screw

External Linear

Connector

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441.

Can-Stacks: Wiring

BIPOLAR

Can-Stacks: Stepping Sequence

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
Step				

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

■ Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications that require a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.
Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100\% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available.
Activation force of $10 \mathrm{oz}(2.78 \mathrm{~N})$ required therefore may not be appropriate for smaller can-stack actuators.

When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{~V}$ DC, 100 mA Tested to 60,000 make-and-break cycles at full load
Schematic	Multiple contact options available.

ADJUST LOCATION OF LOCK NUT TO ENSURE THE REIRACTED DIMENSION

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)	Dim "C" Ref. inches (mm)
$.512(13)$	$1.385+/-.015$	$.841+/-.025$ $(35.17+/-0.38)$	$2.230+/-.025$ $(21.37++-0.64)$ $(56.63+/-0.64)$
$.708(18)$	$1.802+/-.015$ $(45.77+/-0.38)$	$1.050+/-.025$	$2.438+/-.025$
	$(26.67+/-0.64)$	$(61.93+/-0.64)$	
$.984(25)$	$2.353+/-.015$	$1.325+/-.025$	$2.714+/-.025$
	$(59.77+/-0.38)$	$(33.67+/-0.64)$	$(68.93+--0.64)$
$1.22(31)$	N/A Contact Customer Service		

■ Can-Stack Stepper Motor Linear Actuators Options
End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications		
Supply Voltage (VDC)		3.8 min. to 24 max.
Current Consumption		10 mA max.
Output Voltage (operated)		0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current		20 mA max.
Output Leakage Current (released)		$10 \mu \mathrm{~A}$ max. @ Vout = 24 VDC; Vcc = 24 VDC
Output Switching Time	$\begin{aligned} & \text { Rise, } \\ & 10 \text { to } 90 \% \end{aligned}$. 05 山s typ., $1.5 \mu \mathrm{~s}$ max. @ Vcc $=12 \mathrm{~V}, \mathrm{RL}=1.6 \mathrm{KOhm}$
	$\begin{gathered} \text { Fall, } \\ 90 \text { to } 10 \% \end{gathered}$. $15 \mu \mathrm{styp} ., 1.5 \mu \mathrm{~s}$ max. @ CL $=20 \mathrm{pF}$
Temperature		-40 to $+150^{\circ} \mathrm{C}$

NOTE: Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations with conductive tops and operators grounded.

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
$.512(13)$	$1.360(34.55)$	$.73(18.55)$
$.708(18)$	$1.569(39.85)$	$.94(23.85)$
$.984(25)$	$1.844(46.85)$	$1.21(30.85)$
$1.22(31)$	$2.081(52.85)$	$1.45(36.85)$

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 25000 Series
 Ø 25 mm (1.0-in) Can-Stack Stepper Motor Linear Actuators

High durability and exceptional performance. All units are built with dual ball bearings.
Generates higher force than other competitors
Multiple versions available

- Captive
- Non-Captive
- External Linear

Specifications

$\emptyset 25 \mathrm{~mm}$ (1.0-in) Motor				
Captive	2544	+	2554	\dagger
Part No. Non-Captive	2534	†	2584	-
External Linear*	E2544	I	E2554	$\square{ }^{\dagger}$
Wiring	Bipolar			
Step angle	7.5°		15°	
Winding Voltage	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	385 mA	160 mA	385 mA	160 mA
Resistance/phase	13Ω	72Ω	13Ω	72Ω
Inductance/phase	10.8 mH	60 mH	8.08 mH	48 mH
Power Consumption	3.85 W			
Rotor Inertia	$1.07 \mathrm{gcm}^{2}$			
Insulation Class	Class B			
Weight	1.7402 (49 g)			
Insulation Resistance	$20 \mathrm{M} \Omega$			

$\begin{array}{c}\text { Linear Travel / Step } \\ 15^{\circ}\end{array}$			Order
Order Ingle			

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.
tPart numbering information on page 153.
Captive Lead Screw
Dimensions $=(\mathrm{mm})$ inches

Stroke (Minimum) inches (mm)	Front Sleeve A inches (mm)	Retracted B inches (mm)	Extended C inches (mm)	Rear Sleeve D inches (mm)	Code with Connector	Code with Leads
$.512(13 \mathrm{~mm})$	$.472+/-.010(11.99+/-0.25)$	$.787+/-.025(19.99+/-0.64)$	$1.329+/-.015(33.76+/-0.38)$	1.128 Max. $(28.65$ Max. $)$	-905	-1005
$.708(18 \mathrm{~mm})$	$.680+/-.010(17.28+/-0.25)$	$.994+/-.025(25.25+/-0.64)$	$1.743+/-.015(44.27+/-0.38)$	1.336 Max. $(33.94 \mathrm{Max})$.	-907	-1007
$.984(25 \mathrm{~mm})$	$.955+/-.010(24.26+/-0.25)$	$1.269+/-.025(32.23+/-0.64)$	$2.293+/-.015(58.24+/-0.38)$	1.611 Max. $(40.92$ Max. $)$	-910	-1010
$1.22(31 \mathrm{~mm})$	$1.191+/-.010(30.25+/-0.25)$	$1.505+/-.025(38.23+/-0.64)$	$2.765+/-.015(70.23+/-0.38)$	1.847 Max. $(46.91$ Max. $)$	-912	-1012

Non-Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

Up to $6.3-\mathrm{in}(160 \mathrm{~mm})$ standard screw lengths. Longer screw lengths are available.

External Linear

Dimensions $=(\mathrm{mm})$ inches
Up to 6.3 -in (160 mm) standard screw lengths.
Longer screw lengths are available.
 SPACED ON ©(12.70) SPACED ON छ(12.70)
.50 BOLT CIRCLE

Connector

Part Number	Dimension "A"
$56-1318-4$	$(24 \pm 0.39) 610 \pm 10 \mathrm{~mm}$
$56-1318-3$	$(18 \pm 0.39) 450 \pm 10 \mathrm{~mm}$
$56-1318-2$	$(12 \pm 0.39) 305 \pm 10 \mathrm{~mm}$
$56-1318-1$	$(6 \pm 0.39) 150 \pm 10 \mathrm{~mm}$

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

Identifying the Can-Stack Number Codes when Ordering

E	25	5	4	4	12	1010
Prefix (include only when using the following) E = External K = External with 40° thread form P = Proximity Sensor S = Home Position Switch	Series Number Designation $25=25000$ (Series numbers represent approximate diameters of motor body)	Style $3=7.5^{\circ}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $5=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	Coils $4=\begin{aligned} & \text { Bipolar } \\ & (4 \text { wire }) \end{aligned}$	Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & \mathbf{2}=.002-\mathrm{in}(.051) \\ & \mathbf{3}=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \end{aligned}$	Voltage $\begin{gathered} 05=5 \mathrm{VDC} \\ 12=12 \mathrm{VDC} \end{gathered}$ Custom V available	Suffix Stroke Example: -1010 = captive 25 mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number $(-)$ as shown above. For assistance call our Engineering Team at 2037567441 .

Can-Stacks: Wiring
BIPOLAR

Can-Stacks: Stepping Sequence

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
Step				
1	ON	OFF	ON	OFF
2	OFF	ON	ON	OFF
3	OFF	ON	OFF	ON
4	ON	OFF	OFF	ON
1	ON	OFF	ON	OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

- Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications that require

a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear. Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100\% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available. Activation force of $100 \mathrm{zz}(2.78 \mathrm{~N})$ required therefore may not be appropriate for smaller can-stack actuators.
When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{VDC}, 100 \mathrm{~mA}$ Tested to 60,000 make-and-break cycles at full load
Schematic	1

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)	Dim "C" Ref. inches (mm)
$.512(13)$	$1.329+/-.025$ $(33.76+/-0.64)$	$.787+/-.025$ $(19.99+/-0.64)$	$2.051+/-.025$ $(52.09+/-0.64)$
$.708(18)$	$1.743+/-.025$ $(44.27+/-0.64$	$.994+/-.025$ $(25.25+/-0.64)$	$2.258+/-.025$ $(57.35+/-0.64)$
$.984(25)$	$2.293+/-.025$ $(58.24+/-0.64)$	$1.269+/-.025$ $(32.23+/-0.64)$	$2.534+/-.025$ $(64.37+/-0.64)$
$1.22(31)$	$2.765+/-.025$ $(70.23+/-0.64)$	$1.505+/-.025$ $(38.23+/-0.64)$	$2.770+/-.025$ $(70.37+/-0.64)$

G4 25000 Series • Can-Stack Stepper Motor Linear Actuators

■ Can-Stack Stepper Motor Linear Actuators Options

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications	
Supply Voltage (VDC)	3.8 min. to 24 max.
Current Consumption	10 mA max.
Output Voltage (operated)	0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current	

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
$.512(13)$	$1.248(31.71)$	$.632(16.05)$
$.708(18)$	$1.449(36.81)$	$.833(21.15)$
$.984(25)$	$1.723(43.76)$	$1.106(28.10)$
$1.22(31)$	$1.959(49.76)$	$1.343(34.10)$

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 25000 Series E8T Encoder

G4 25000 Series E8T Transmissive Optical Encoder is designed to provide the digital quadrature encoder feedback for high volume, compact space applications.

- Resolutions from 180 to 720
- Single-ended / Differential
- Frequency response to 100 kHz
- Low power consumption, 5 V @ 30 mA max
- High retention polarized connector

Assembly Options:

- Differential line driver with complementary outputs
- Detachable cable
- Through-hole cover

Stroke inches (mm)	Dim "A" Extended inches (mm)
$.512(13)$	N / A
$.708(18)$	N / A
$.984(25)$	$.071(1.80)$
$1.22(31)$	$.307(7.80)$

G4 37000 Series

Ø 36 mm (1.4-in) Can-Stack Stepper Motor Linear Actuators

Outstanding durability and high performance.
The G4 Series features high energy neodymium magnets and dual ball bearings.

Exceptionally high linear force-to-size ratio, ideal for precision motion
Multiple versions available

- Captive
- Non-Captive
- External Linear
$\emptyset 37 \mathrm{~mm}$ (1.4-in)
Non-Captive

Specifications

$\emptyset 36 \mathrm{~mm}$ (1.4-in) Motor					
Part No.	Captive	3744	\dagger	3754	\dagger
	Non-Captive	3734	+	3784	1
	External Linear	E3744	$\square+$	E3754	1- ${ }^{+}$
Wiring		Bipolar			
Step angle		7.5°		15°	
Winding Voltage		5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase		561 mA	230 mA	561 mA	230 mA
Resistance/phase		8.9Ω	52Ω	8.9Ω	52Ω
Inductance/phase		11.6 mH	65 mH	8.5 mH	46 mH
Power Consumption		5.6 W			
Rotor Inertia		$8.5 \mathrm{gcm}^{2}$			
Insulation Class		Class B			
Weight		4.2 oz (120 g)			
Insulation Resistance		$20 \mathrm{M} \Omega$			

Linear Travel / Step 15° Step Angle			Order Code I.D.
step	inches	mm	
$\begin{gathered} 7.5^{\circ} \\ \text { Angle } \end{gathered}$	0.0005	0.013	3
	0.001	0.0254	1
	0.002	0.051	2
$\begin{gathered} 15^{\circ} \\ \text { Angle } \end{gathered}$	0.001	0.0254	1
	0.002	0.051	2
	0.004	0.102	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.
+Part numbering information on page 159.

Non-Captive Lead Screw
Dimensions $=(\mathrm{mm})$ inches

External Linear

Dimensions $=(\mathrm{mm})$ inches
Up to 6.3 -in $(160 \mathrm{~mm})$ standard screw lengths.
Longer screw lengths are available.

Connector

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply. Actuator bearings are rated for 75 lbs . Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also deceleration can be used to stop the motor without overshoot.

Identifying the Can-Stack Number Codes when Ordering

E	37	4	4	2	05	1015
Prefix (include only when using the following) E = External K = External with 40° thread form $\mathrm{P}=$ Proximity Sensor S = Home Position Switch	Series Number Designation $37=37000$ (Series numbers represent approximate diameters of motor body)	$\begin{array}{r} \text { Style } \\ 3=7.5^{\circ} \end{array}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $5=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	Coils $4=\begin{aligned} & \text { Bipolar } \\ & (4 \text { wire }) \end{aligned}$	Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & \mathbf{2}=.002-\mathrm{in}(.051) \\ & \mathbf{3}=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \end{aligned}$	Voltage $\begin{gathered} 05=5 \mathrm{VDC} \\ 12=12 \mathrm{VDC} \end{gathered}$ Custom V available	Suffix Stroke Example: - $1015=$ captive 38.1 mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number $(-)$ as shown above. For assistance call our Engineering Team at 2037567441 .

Can-Stacks: Wiring

BIPOLAR

Can-Stacks: Stepping Sequence

Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
Step				
O	ON	OFF	ON	OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

- Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications that require a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.

Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.
Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100\% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available. Activation force of $10 \mathrm{oz}(2.78 \mathrm{~N})$ required therefore may not be appropriate for smaller can-stack actuators.
When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications

Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{~V} \mathrm{DC}, 100 \mathrm{~mA}$ Tested to 60,000 make-and-break cycles at full load
Schematic	1

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)	Dim "C" Ref. inches (mm)
$.631(16)$	$1.348+/-.025$ $(34.24+/-0.64)$	$.677+/-.025$ $(17.19+/-0.64)$	$2.218+/-.025$ $(56.33+/-0.64)$
$1.00(25.4)$	$2.348+/-.025$	$1.177+/-.025$	$2.718+/-.025$ $(56.94+/-0.64)$
$(29.89+/-0.64)$	$(69.03+/-0.64)$		
$1.50(38.1)$	$3.348+/-.025$ $(85.04+/-0.64)$	$1.677+/-.025$ $(42.59+/-0.64)$	$3.218+/-.025$ $(81.73+/-0.64)$

■ Can-Stack Stepper Motor Linear Actuators Options

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications	
Supply Voltage (VDC)	3.8 min . to 24 max.
Current Consumption	10 mA max.
Output Voltage (operated)	0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current	

Stroke inches (mm)	Dim "A" inches (mm)	Dim "B" inches (mm)
$.631(16)$	$1.404(35.65)$	$.695(17.65)$
$1.00(25.4)$	$1.906(48.41)$	$1.197(30.41)$
$1.50(38.1)$	$2.409(61.18)$	$1.700(43.18$

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 37000 Series E8T Encoder

G4 37000 Series E8T Transmissive Optical Encoder is designed to provide the digital quadrature encoder feedback for high volume, compact space applications.

- Resolutions from 180 to 720
- Single-ended / Differential
- Frequency response to 100 kHz
- Low power consumption, 5 V @ 30 mA max
- High retention polarized connector

Assembly Options:

- Differential line driver with complementary outputs
- Detachable cable
- Through-hole cover

Stroke inches (mm)	Dim "A" Extended inches (mm)
$.631(16)$	N/A
$1.00(25.4)$	$.098(2.50)$
$1.50(38.1)$	$.598(15.20)$

15000 Series

$\varnothing 15$ mm (.59-in) Can-Stack Stepper Motor Linear Actuators

Delivering force of up to $8 \mathrm{lbs}(35 \mathrm{~N})$ without compromising long life or cost. Lightweight models can also be micro- stepped for even finer resolution. Bi-directional travel motor. Available as connector stator or "space saving" flying leads type motor bodies.

The world's smallest commercial linear stepper motor

Multiple versions available

- Captive
- External Linear with free-wheeling BFW nut
- External Linear with ZBM anti-backlash nut*
*May not be available in all leads

Specifications

tPart numbering information below.

Identifying the Can-Stack Number Codes when Ordering

LC	15	7	4	W	04	999
Prefix LC = Captive LE = External Linear	Series Number Designation $15=15000$ (Series numbers represent approximate diameters of motor body)	Step Angle $7=18^{\circ}$	Coils $4=\begin{aligned} & \text { Bipolar } \\ & (4 \text { wire }) \end{aligned}$	Code ID Resolution Travel/Step $\begin{aligned} & \mathrm{BZ}=.00059-\mathrm{in}(.015) \\ & \mathrm{W}=.00079-\mathrm{in}(.02) \\ & \mathrm{AQ}=.00098-\mathrm{in}(.025) \\ & \mathrm{BH}=.00197-\mathrm{in}(.05) \\ & \mathrm{DC}=.00394-\mathrm{in}(.10) \end{aligned}$	Voltage $\begin{aligned} 04 & =4 \mathrm{VDC} \\ 05 & =5 \mathrm{VDC} \\ 12 & =12 \mathrm{VDC} \end{aligned}$ Custom V available	Suffix Stroke Example: -999 = 12-in leads $-X X X=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

[^0]15000 Series • Can-Stack Stepper Motor Linear Actuators
Captive Lead Screw

MICRO Series
Dimensions $=(\mathrm{mm})$ inches
Standard nut styles. Consult the factory for custom solutions.

MICRO Series Nut Styles			
Part No.	BFW Nut Style	Dynamic Load $\mathbf{l b s}(\mathrm{Kg})$	Drag Torque oz-in (NM)
BFWB	Barrel Mount	$10(4.5)$	Free Wheeling
BFWR	Rectangular Flange		

Barrel Nut Style

Rectangular Nut Style

FORCE vs. PULSE RATE

> - L/R Drive - Bipolar - 100\% Duty Cycle

FORCE vs. PULSE RATE
-Chopper Drive - Bipolar - 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive - Bipolar - 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive - Bipolar - 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

15000 Series • Can-Stack Stepper Motor Linear Actuators Wiring \& Stepping Sequence

Can-Stacks: Wiring

BIPOLAR

Can-Stacks: Stepping Sequence

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

NEW! 15000 Series E16 Encoder

15000 Series E16 optical encoder is designed to provide A, B and Index digital quadrature signals for high volume, restricted space applications.

- Resolutions from 250/256 to 4000/4096
- Single-ended only
- Low power consumption, 5V @ 26mA max

Assembly Options:

- Detachable cable

Custom Free-Wheeling Nuts

Modified and custom free-wheeling nuts are available for the LE external linear versions. Custom geometries and materials can be combined for a wide variety of product application requirements, to help eliminate additional adjacent components as well as to deliver cost and space-saving benefits.
$\emptyset 15 \mathrm{~mm}$ (.59-in)
External Linear

Pin \#	Description
1	Ground
2	Index
3	A channel
4	+5VDC power
5	B channel

Z20000 Series

$\varnothing 20$ mm (.79-in) Can-Stack

 Stepper Motor Linear ActuatorsUtilizing rare earth (neodymium) magnets, the Z-Series Linear Actuators consistently deliver exceptional performance at an economical price. Also available in a special "earless" configuration without a mounting flange, which is ideal for space constrained applications.

Economical motors for high volume applications

Multiple versions available

- Captive
- Non-Captive
- External Linear

Specifications
$\emptyset 20 \mathrm{~mm}$ (.79-in)

ors

Option:
Earless Z20000
Series Actuator

+Part numbering information on page 168.
*When ordering Z-Series External Linear motors, add -900 to end of the Part Number.

Linear Travel / Step 15°		Order Code I.D.
inches	mm	
0.001	0.0254	1
0.002	0.051	2
0.004	0.102	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.

Non-Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

Up to 6-in (152 mm) standard screw lengths, Longer screw lengths are available.

External Linear

Dimensions $=(\mathrm{mm})$ inches
Up to 6-in (152 mm) standard screw lengths. Longer screw lengths are available.

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

Identifying the Can-Stack Number Codes when Ordering

Z	20	5	4	2	05	900
Prefix Z = Series Code	Series Number Designation $20=20000$ (Series numbers represent approximate diameters of motor body)	Style $5=15^{\circ}$ Captive or External (use -900 Suffix for External version) $8=15^{\circ}$ Non-Captive	Coils $4=\begin{aligned} & \text { Bipolar } \\ & \\ & \text { (4 wire) } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Code ID Resolution } \\ \quad \text { Travel/Step } \end{array} \\ & 1=.001 \text {-in }(.0254) \\ & 2=.002 \text {-in (.051) } \\ & 4=.004-\text { in }(.102) \end{aligned}$	Voltage $\begin{gathered} 05=5 \mathrm{VDC} \\ 12=12 \mathrm{VDC} \end{gathered}$ Custom V available	Suffix Stroke Example: -900 used to code Z-Series external linear - XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number $(-)$ as shown above. For assistance call our Engineering Team at 2037567441.

Can-Stacks: Wiring

BIPOLAR

Can-Stacks: Stepping Sequence

Bipolar Q2-Q3 Q1-Q4 Q6-Q7 Q5-Q8 Step 1 ON OFF ON OFF 2 OFF ON ON OFF 3 OFF ON OFF ON 4 ON OFF OFF ON 1 ON OFF ON OFF

■ Can-Stack Stepper Motor Linear Actuators Options

TFE Coated Lead Screws for applications

 that require a permanent, dry lubricantIdeal for applications where conventional oils and greases cannot be used for lead screw lubrication.
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.
Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE - L/R Drive - 100\% Duty Cycle

- Can-Stack Stepper Motor Linear Actuators Options

Specially Engineered Can-Stack Linear Actuators for high temperature applications

Stepping motors specially designed for high temperature environments.
Materials meeting class F temperature ratings are used in construction. Specialized components include high temperature bobbins, coils, lead wires, lubricant and adhesives.

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available.
Activation force of 10 oz (2.78 N) required therefore may not be appropriate for smaller can-stack actuators.
When ordering motors with the home position switch, the part number should be preceded by an " S ".

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications.
Virtually unlimited cycle life. Special cabling and connectors available.

Specifications

Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{VDC}, 100 \mathrm{~mA}$ Tested to 60,000 make-and-break cycles at full load
Schematic	Multiple contact options available.

Specifications	
Supply Voltage (VDC)	

NOTE: Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations with conductive tops and operators grounded.

Z26000 Series

Ø 26 mm (1-in) Can-Stack Stepper Motor Linear Actuators

Designed to accommodate high volume applications Z26000 Series motors utilize rare earth (neodymium) magnets. Also, available in a special "earless" configuration without a mounting flange. All units are built with durable dual ball bearings.

Multiple versions available

- Captive - Non-Captive - External Linear

NOW AVAILABLE! Shorter motor body option available (see page 174)

Specifications

Ø 26 mm (1-in) Z-Series Motor									
Part No.	Captive	Z2644 - - - +		Z2654 - - ${ }^{\text {- }}$		Z2646 - - \square^{+}		Z2656 - - \square^{\dagger}	
	Non-Captive	Z2634 - - ${ }^{\text {- }}$ +		Z2684 - -		Z2636 - - + +		Z2686 - - ${ }^{\text {- }}$	
	External Linear*	Z2644 - -9 + ${ }^{\text {+* }}$		Z2654 - - ${ }^{\text {a }}$ +*		Z2646--9 + ${ }^{\text {+* }}$		Z2656--9 - ${ }^{\text {+* }}$	
Wiring		Bipolar				Unipolar*			
Step angle		7.5°		15°		7.5°		15°	
	ing Voltage	5 VDC	12 VDC						
Curre	(RMS)/phase	340 mA	140 mA						
	tance/phase	14.7Ω	84Ω	14.7Ω	84Ω	14.7Ω	84Ω	14.7 ת	84Ω
	tance/phase	8.5 mH	55 mH	6.7 mH	44 mH	4.3 mH	24 mH	3.4 mH	19 mH
Powe	Consumption	3.4 W							
	or Inertia	$1.4 \mathrm{gcm}^{2}$							
	ation Class	Class B							
	Weight	1.20 z (34 g)							
Insula	on Resistance	$20 \mathrm{M} \Omega$							

tPart numbering information on page 4. *Unipolar drive gives approximately 40% less thrust compared to bipolar drive. ** When ordering Z-Series External Linear motors, add -900 to end of the Part Number.

Linear Travel / Step 15° Step Angle			Order Code I.D.
step	inches	mm	
7.5°	0.0005	0.013	3
	0.001	0.0254	1
	0.002	0.051	2
15°	0.00164	0.04166	AS
	0.002	0.051	2
	0.004	0.102	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.

Also available, specially engineered Z26000 (Ø $26 \mathrm{~mm}, 1$-in) linear actuators that extend captive lead screw travel beyond $12.7 \mathrm{~mm}(1 / 2-\mathrm{in})$.

Captive Lead Screw

Non-Captive Lead Screw

External Linear see new motor body option avaliable on next page.
Dimensions $=(\mathrm{mm})$ inches

Up to 6-in (152 mm) standard screw lengths. Longer screw lengths are available.

Linear Series Z26000 Nut Option
Dimensions $=(\mathrm{mm})$ inches

New space
saving option

When ordering, the shorter motor option can be referenced using the last three suffix digits (-XXX).

Identifying the Can-Stack Number Codes when Ordering

Z	26	4	4	2	05	900
Prefix Z = Series Code	Series Number Designation $26=26000$ (Series numbers represent approximate diameters of motor body)	Style $3=7.5^{\circ}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $5=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	$\left.\mathbf{4}=\begin{array}{c} \text { Coils } \\ \text { Bipolar } \\ (4 \text { wire }) \end{array}\right)$	Code ID Resolution Travel/Step $\begin{aligned} \mathbf{1} & =.001-\mathrm{in}(.0254) \\ \mathbf{2} & =.002-\mathrm{in}(.051) \\ \mathbf{3} & =.0005-\mathrm{in}(.013) \\ \mathbf{4} & =.004-\mathrm{in}(.102) \\ \mathrm{AS} & =.04166-\mathrm{in} \\ & (.00164) \end{aligned}$	Voltage $\begin{gathered} 05=5 \mathrm{VDC} \\ 12=12 \mathrm{VDC} \end{gathered}$ Custom V available	Suffix Stroke Example: -900 used to code Z-Series external linear $-X X X=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441 .

Can-Stacks: Wiring

Can-Stacks: Stepping Sequence

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

AC (Alternating Current) Synchronous Actuators

Stepping motors can also be run on AC (Alternating Current). However, one phase must be energized through a properly selected capacitor. In this case the motor is limited to only one synchronous speed. For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.

Alternating Current (AC) Hybrid Linear Actuators

Stepping motors can also be run on Alternating Current (AC). However, one phase must be energized through a properly selected capacitor. In this case, the motor is limited to only one synchronous speed.
For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.
In the case of a linear actuator the linear speed produced is dependent on the resolution per step of the motor. For example, if 60 hertz is supplied to a . $001-\mathrm{in} /$ step motor the resulting speed is .240 -in per second (240 steps per second times .001-in/step). Many of our stepping motors are available as 300 or 600 RPM AC synchronous motors.

Electrical Data

Series	Size	Watts	Amps	Capacitor (Mfd) @ 60 Hz	Capacitor (Mfd) @ 50 Hz	Coil Resistance (Ohms)		Connection
				Main Wind.	Cap. Wind.	Diagram		
$\mathbf{3 5 0 0 0}$	14	5.7	0.21	15	15	300	300	3
43000	17	6.5	0.27	15	15	104	104	3
57000	23	13.0	0.60	30	40	35	35	3
87000^{\star}	34	30.0	2.00	200	200	2.3	2.3	4

* With 12 OHM, 100 watt resistor in series.

			Identifying the AC Hybrid Part Number Codes when Ordering					
A	35	H	4		N		24	800
Prefix $A=$ A Coil)	Series Number Designation $35=35000$ (Size 14) $43=43000$ (Size 17) $57=57000$ (Size 23) $87=87000$ (Size 34)	Style $\mathrm{F}=1.8^{\circ}$ Non-captive H $=1.8^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $\mathrm{J}=0.9^{\circ}$ Non-captive $\mathrm{K}=0.9^{\circ}$ Captive or External (use "E" or "K" Prefix for External version)	Coils 4 = Bipolar (4 wire)	35000 and 43000 Series Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{N}=.00012-\mathrm{in}(.0030) \\ & \mathrm{K}=.00024-\mathrm{in}(.0060) \\ & \mathrm{J}=.00048-\mathrm{in}(.0121) \\ & \mathbf{Q}=.00096-\mathrm{in}(.0243) \\ & \mathrm{P}=.00015625-\mathrm{in}(.0039) \\ & \mathbf{A}=.0003125-\mathrm{in}(.0079) \\ & \mathbf{B}=.000625-\mathrm{in}(.0158) \\ & \mathbf{C}=.00125-\mathrm{in}(.0317) \\ & \mathbf{R}=.00192-\mathrm{in}(.0478) \end{aligned}$ High Resolution $\begin{aligned} & \mathbf{U}=.00006-\mathrm{in}(.0015) \\ & \mathbf{V}=.000078-\text { in }(.00198) \end{aligned}$	57000 Series Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{7}=.000125-\mathrm{in}(.0031) \\ & \mathrm{S}=.0004167-\mathrm{in} \\ & \\ & (.01058418) \\ & \mathbf{3}=.0005-\mathrm{in}(.0127) \\ & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & \mathbf{A}=.0003125-\mathrm{in}(.0079) \\ & \mathrm{T}=.0008333-\mathrm{in}(.0211) \\ & \mathbf{2}=.002-\mathrm{in}(.0508) \end{aligned}$ High Resolution $\mathbf{P}=.00015625-\mathrm{in}$ (.003969) $\begin{gathered} \mathrm{X}=.00020833-\mathrm{in} \\ \quad(.00529166) \\ 9=.00025-\mathrm{in}(.0635) \end{gathered}$	87000 Series Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{3}=.0005-\mathrm{in}(.0127) \\ & \mathbf{B}=.000625-\mathrm{in}(.0158) \\ & \mathbf{C}=.00125-\mathrm{in}(.0317) \\ & \mathbf{Y}=.0025-\mathrm{in}(.0635) \\ & \mathbf{Z}=.005-\mathrm{in}(.127) \end{aligned}$	Voltage $24=$ 24 VDC	Suffix -800 = External linear (added to Captive shaft part number) $-X X X=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

[^1][^2]For an external linear shaft, add the three digit suffix - 800 to the captive shaft part number.
Example 3: A35H4N-24 with an external linear shaft becomes A35H4N-24-800.
All standard motors operate at 24 Volts, represented in the part number by the number -24 (A35H4N-24). No other suffix is required

AC Can-Stack Linear Actuators

Stepping motors can also be run on Alternating Current (AC). However, one phase must be energized through a properly selected capacitor. In this case, the motor is limited to only one synchronous speed.

For instance, if 60 hertz is being supplied, there are 120 reversals or alterations of the power source. The phase being energized by a capacitor is also producing the same number of alterations at an offset time sequence. The motor is really being energized at the equivalent of 240 steps per second.

In the case of a linear actuator the linear speed produced is dependent on the resolution per step of the motor. For example, if 60 hertz is supplied to a .001 -in/ step motor the resulting speed is .240 -in per second (240 steps per second times . 001 -in/step). Many of our stepping motors are available as 300 or 600 RPM AC synchronous motors.

Identifying the AC Can-Stack Part Number Codes when Ordering

A	35	5	4		2		24	800
Prefix $A=$ A Coil Z = Economy Series (For 20000 and 26000 Series only)	Series Number Designation $20=20000$ (Ø20mm, .79-in) $26=26000$ (Ø26mm, 1 -in) $36=36000$ (Ø36mm, 1.4-in) $46=46000$ (046 mm , $1.8-\mathrm{in})$	Style $3=7.5^{\circ}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $5=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	Coils 4 = Bipolar (4 wire)	20000 and Z20000 Series Code ID Resolution Travel/Step $\begin{aligned} & 1=.001-\mathrm{in}(.0254) \\ & 2=.002-\mathrm{in}(.051) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \end{aligned}$	26000 Series Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\text { in }(.0254) \\ & \mathbf{2}=.002-\text { in }(.051) \\ & \mathbf{3}=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \\ & \mathbf{9}=.00025-\mathrm{in}(.00635) \end{aligned}$ Z26000 Series Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & 2=.002-\mathrm{in}(.051) \\ & 3=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \\ & \mathrm{AS}=.04166-\mathrm{in}(.00164) \end{aligned}$	36000 Series Code ID Resolution Travel/Step $\begin{aligned} & 1=.001-\text { in }(.0254) \\ & 2=.002-\text { in }(.051) \\ & 3=.0005-\text { in }(.013) \\ & 4=.004-\text { in }(.102) \end{aligned}$ High Resolution $\begin{aligned} & 7=. .000125-\text { in (.0032) } \\ & 9=.00025-\text { in (.00635) } \end{aligned}$ 46000 Series Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & \mathbf{2}=.002-\mathrm{in}(.051) \\ & \mathbf{3}=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \\ & \mathbf{8}=. .0008-\mathrm{in}(.203) \\ & \mathbf{G}=.016-\mathrm{in}(.406) \end{aligned}$	Voltage $\begin{gathered} 24= \\ 24 \text { VDC } \end{gathered}$	Suffix $-800=$ External linear (added to Captive shaft part number) $-X X X=$ Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441.

Motor part numbers are for a captive shaft. For a non-captive shaft, change the third digit from a " 4 " to an " 3 ". Example 1: A26441-24 with a non-captive shaft becomes A26341-24. Exception: When the third digit is " 5 " for a non-captive shaft substitute " 8 ". Example 2: A26544-24 with a non-captive shaft becomes A26844-24.

For an external linear shaft, add the three digit suffix - 800 to the captive shaft part number.
Example 3: A26441-24 with an external linear shaft becomes A26441-24 - 800. All standard motors operate at 24 Volts, represented in the part number by the suffix - 24 (A36443-24).

Specifications						
Motor Part No.	Linear Speed @ 60 Hz		Linear Speed @ 50 Hz		Maximum Force	
,	(inches/sec.)	(cm/sec.)	(inches/sec.)	(cm/sec.)	(lbs.)	(Newtons)
Z20541-24-700	0.24	0.610	0.20	0.508	5.5	24
Z20542-24-700	0.48	1.219	0.40	1.016	3.0	13
Z20544-24-700	0.96	2.438	0.80	2.032	1.8	8
A26443-24	0.12	0.305	0.10	0.254	7.4	33
A26441-24	0.24	0.610	0.20	0.508	4.4	20
A26542-24	0.48	1.219	0.40	1.016	3.5	16
A26544-24	0.96	2.438	0.80	2.032	2.0	9
Z26443-24-700	0.12	0.305	0.10	0.254	13.0	58
Z26441-24-700	0.24	0.610	0.20	0.508	8.3	37
Z26542-24-700	0.48	1.219	0.40	1.016	6.6	29
Z26544-24-700	0.96	2.438	0.80	2.032	3.3	15
A36443-24**	0.12	0.305	0.10	0.254	16.0	71
A36441-24**	0.24	0.610	0.20	0.508	12.0	53
A36442-24**	0.48	1.219	0.40	1.016	6.0	27
A36544-24**	0.96	2.438	0.80	2.032	3.0	13
A46443-24**	0.12	0.305	0.10	0.254	43	191
A46441-24**	0.24	0.610	0.20	0.508	34	151
A46442-24**	0.48	1.219	0.40	1.016	20	89
A46544-24**	0.96	2.438	0.80	2.032	11	49
A46548-24**	1.92	4.877	1.60	4.064	5.4	24
A4654G-24**	3.84	9.754	3.20	8.128	2.7	12

** Select motors available with 24 Volts or 120 Volts (replace 24 with 120).

[^0]: NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441

[^1]: NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441

[^2]: Motor part numbers are for a captive shaft. For a non-captive shaft, change the middle letter from an "H" to an "F". Example 1: A35H4N-24 with a non-captive shaft becomes A35F4N-24.
 Exception: A43K4U-24 (high resolution) and A43K4V-24 (High resolution), for a non-captive shaft substitute " J " in place of the " K ". Example 2: A43K4U-24 with a non-captive shaft becomes A43J4U-24.

